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Acronyms
AGB: above-ground biomass

AI: artificial intelligence

ARR: afforestation, reforestation, or revegetation

CDR: carbon dioxide removal

CHM: canopy height map

GEDI: Global Ecosystem Dynamics Investigation

IFM: improved forest management

IP: intellectual property

IPCC: Intergovernmental Panel on Climate Change

lidar: light detection and ranging

MMRV: measurement, monitoring, reporting, and verification

NAIP: National Agriculture Imagery Program (United States)

SAR: synthetic aperture radar

VCM: voluntary carbon market

VVBs: validation and verification bodies
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At Meta, our commitment to reach net-zero 

emissions across our value chain in 2030 is the 

north star in our work to address climate change 

and operate sustainably . To meet this goal, we are 

focused on working across our company, and with 

our suppliers, to reduce the emissions associated 

with operating a global business and building the 

physical infrastructure that brings our technologies 

and platforms to life . For any residual emissions, we 

rely on carbon removal projects as the final step to 

reach net zero .  

Nature-based carbon removal via ecosystems like 

forests is one of the critical tools we can leverage 

to address the climate crisis . As we engage with 

the voluntary carbon market, we aim to increase 

the availability and quality of nature-based carbon 

credits . This both helps us to meet our net-zero 

goal and supports nature’s vital role in mitigating 

climate change at scale in a crucial, near-term 

timeframe . Remote sensing technologies are one 

important tool that can improve the quality of carbon 

removal projects . These technologies, and their 

related datasets, can increase the transparency, 

accessibility, reliability, and scalability of measuring 

forest carbon sequestration . They may even increase 

the efficiency and speed at which new carbon 

removal projects are able to become verified and 

begin receiving revenue from issued carbon credits . 

Barriers remain, however, to fully realizing the 

potential for and effectively applying these 

technologies in projects around the world . 

We are conducting our own research utilizing 

satellite imagery, lidar data, and machine learning—

which has produced an open-source dataset that 

estimates global tree canopy height at a high spatial 

resolution . Yet we acknowledge the challenges 

carbon project developers, registries, and others 

face when attempting to fully integrate and deploy 

tools like these

We are pleased to have collaborated with Carbon 

Direct to identify obstacles and opportunities to 

deploy remote sensing in forest carbon projects . 

We hope the findings in this report will help project 

developers and buyers address the barriers to 

applying these technologies, increase the certainty 

that new datasets can be adopted in the carbon 

market, and chart a path forward to unlocking the 

potential of remote sensing, artificial intelligence, 

and other new technologies for climate change 

mitigation . Our ability to apply new technologies 

to mitigating the effects of climate change will be 

pivotal to achieving this objective at the speed and 

efficiency it requires . We hope this report provides 

useful insights to unlock solutions to do so, and we 

look forward to continuing to partner with many of 

you in this effort .

Blair Swedeen 

Global Head of Net Zero and Sustainability

Foreword

http://carbon-direct.com
https://about.meta.com/
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Executive summary

1. Intergovernmental Panel on Climate Change (IPCC). 2023. Climate Change 2022 – Impacts, Adaptation and Vulnerability: Working Group II Contribution to 
the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. [accessed 2025 Jul 3]. https://
www .cambridge .org/core/books/climate-change-2022-impacts-adaptation-and-vulnerability/161F238F406D530891AAAE1FC76651BD .

Forests play a critical role in regulating the Earth’s 

climate. Protecting and restoring them is one of our 

most effective strategies to mitigate climate change . 

The Intergovernmental Panel on Climate Change 

(IPCC) recognizes forest carbon as one of the most 

viable pathways to achieving large-scale carbon 

dioxide removal (CDR).1 Central to these efforts is 

the voluntary carbon market (VCM), which brings 

together buyers and sellers to finance forest carbon 

projects worldwide .

For the VCM to function successfully, we need to 

accurately quantify the impact of forest carbon 

projects through measurement, monitoring, 

reporting, and verification (MMRV). However, 

this remains challenging—and in some cases 

prohibitively expensive . 

We are entering the digital age of forest 

management. Remote sensing technologies including 

sensors attached to satellite, aircraft, or drone 

platforms, are making MMRV more transparent, 

accessible, reliable, and scalable . Realizing the full 

potential of remote sensing will require overcoming 

barriers around data use and quality, industry 

standards, and technical capacity . 

In this report, Carbon Direct and Meta aim to dissect 

these barriers and identify potential solutions . To do 

so, we conducted stakeholder research involving 

nearly 40 participants, including project developers, 

land owners, and registries . During interviews, 

stakeholders expressed an encouraging amount of 

consensus, including a desire to create an inclusive 

forest carbon MMRV consortium that would help 

to guide the industry’s adoption and use of remote 

sensing . Establishing this consortium could be 

a critical first step toward allowing stakeholders 

to come together to adopt and implement the 

recommendations below . 

To unlock remote sensing technology for 

forest carbon MMRV, we present seven 

recommendations:

1. Define acceptable remote sensing data and 

workflows that allow flexibility as technologies 

evolve. Right now, carbon registries, credit 

buyers, and verifiers have varying expectations 

and requirements, generating uncertainty . Lack 

of clear guidance makes it difficult for project 

developers to confidently adopt and integrate 

remote sensing methods .

2. Clearly define where specific remote sensing 

datasets and models are geographically 

applicable. Users need to know when and 

where they can trust model estimates . There 

is currently a lack of standardization and 

consensus on acceptable approaches for 

quantifying model uncertainty, reporting 

uncertainty, and determining where a calibrated 

model can be safely used . While evaluating new 

models as they develop will be an ongoing and 

iterative process, the applicability of current 

http://carbon-direct.com
https://www.cambridge.org/core/books/climate-change-2022-impacts-adaptation-and-vulnerability/161F238F406D530891AAAE1FC76651BD
https://www.cambridge.org/core/books/climate-change-2022-impacts-adaptation-and-vulnerability/161F238F406D530891AAAE1FC76651BD
https://www.cambridge.org/core/books/climate-change-2022-impacts-adaptation-and-vulnerability/161F238F406D530891AAAE1FC76651BD
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models must be understood before using them 

for credit issuance .

3. Align on the role of uncertainty in credit 

issuance. This will help buyers and registries 

account for natural variability in forest carbon 

estimates . There is ongoing skepticism among 

stakeholders regarding the accuracy and 

reliability of estimates of forest structure that 

are based on remote sensing . However, once 

model applicability is established, an appropriate 

degree of uncertainty can be accommodated 

in market mechanisms . We recommend that 

an inclusive forest carbon MMRV consortium 

facilitate a public-facing discussion among 

buyers, registries, scientific experts, and 

standard-setters to improve alignment on 

acceptable levels of uncertainty for carbon 

project applications .

4. Standardize how data providers evaluate and 

report uncertainty to facilitate comparison 

between and improve trust in remote sensing 

models and products . This requires that model 

uncertainties are well defined, and that avenues 

for market integration are clearly established . 

We recommend that domain experts, data 

providers, and registries collaborate on 

working toward more standardized methods for 

evaluating and reporting the reliability of remote 

sensing data products, for specific carbon 

project activities and regions .

5. Create a global benchmarking dataset with 

validated forest measurements to improve model 

testing and calibration, while being careful 

to respect the data sovereignty and privacy 

2 . Indigenous Peoples, including Tribal Nations and First Nations, have unique protocols around data sharing and sovereignty that should be respected  
when developing a global benchmarking dataset .  

3. Meta’s new canopy height model (Tolan et al. 2024) is an example of one such use of deep learning models to improve forest structural datasets.

of parties providing measurements .2 Dataset 

benchmarking can be reliably achieved when 

evaluation standards are clearly established . 

Both developers and registries noted that 

keeping pace with new remote sensing 

technologies and products is challenging . A 

publicly available, user-friendly benchmarking 

resource would help developers and registries 

assess the quality of new and existing datasets .

6. Develop a centralized remote sensing data 

portal for forest carbon MMRV to make 

high-quality data, models, and derived data 

products more accessible to VCM stakeholders . 

Following establishment of dataset benchmarks, 

infrastructure to house data can be created 

to facilitate reliable application of the data . 

This platform could host both open source 

and commercial models and data products . 

The portal would make data more accessible 

while allowing the sale of commercial data to 

incentivize investment in new data collection 

and model development .

7. Apply new deep learning models to create 

higher-resolution, more accurate, and more 

user-friendly remote sensing products that 

can better track forest carbon through time . 

This requires stakeholders to have a thorough 

understanding of model uncertainties, stable 

infrastructures, and well-defined standards 

for use . Deep learning architectures3 have 

the potential to produce more accurate and 

geographically consistent estimates of forest 

structural attributes compared to classical 

machine learning methods .

http://carbon-direct.com
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Copernicus Sentinel-2 L2A data [2025-07-09]. Latitude = 53.75219 Longitude = -126.57166.

http://carbon-direct.com
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Remote sensing for  
forest carbon MMRV 

4. Intergovernmental Panel on Climate Change (IPCC). 2023. Climate Change 2022 – Impacts, Adaptation and Vulnerability: Working Group II Contribution 
to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. [accessed 2025 Jul 3]. https://
www .cambridge .org/core/books/climate-change-2022-impacts-adaptation-and-vulnerability/161F238F406D530891AAAE1FC76651BD .

5. West TAP, Wunder S, Sills EO, Börner J, Rifai SW, Neidermeier AN, Frey GP, Kontoleon A. 2023. Action needed to make carbon offsets from forest 
conservation work for climate change mitigation. Science. 381(6660):873–877. doi:10 .1126/science .ade3535. [accessed 2025 Jul 3]. https://www .science .
org/doi/10 .1126/science .ade3535 .

Forests play a critical role in regulating the Earth’s 

climate. Protecting and restoring them is one of our 

most effective strategies for achieving large-scale 

CDR .4 Central to these efforts is the VCM, which 

brings together buyers and sellers to finance forest 

carbon projects worldwide . 

Forest projects generate carbon credits for the VCM 

by demonstrating measurable climate benefits—

examples include improved forest management 

(IFM) or afforestation, reforestation, or revegetation 

(ARR) activities. These projects have significant 

potential to drive sustainable forest practices and 

ecosystem restoration, but the field as a whole 

has been criticized for not consistently delivering 

on promised or claimed carbon accruals .5 We must 

credibly report carbon accruals to strengthen 

the field’s integrity, which demands rigorous and 

transparent MMRV . 

While accurate MMRV for forest carbon projects 

is fundamental for credible credit issuance, the 

scale of many projects can make traditional MMRV 

approaches costly and challenging . Remote 

sensing tools have become integral to effective 

MMRV across large areas, but using these tools 

often requires technical, scientific, and statistical 

expertise . In order to better understand how to 

harness advances in remote sensing to drive 

transparency, scale, and equity in carbon markets, 

Meta asked Carbon Direct to conduct a study of the 

current state of remote sensing within the forest 

carbon space . This study aims to better understand 

what factors may drive more widespread uptake 

of remote sensing for forest carbon MMRV . 

As part of this study, Carbon Direct and Meta 

conducted stakeholder research involving nearly 

40 participants, including 19 interviews with forest 

carbon developers, registries, diligence providers, 

and data providers, as well as an in-person 

roundtable discussion . 

In this report, we provide a brief history of remote 

sensing technology and discuss the value of 

remote sensing data within forest carbon MMRV 

frameworks . We describe current barriers to 

the uptake of these technologies and make 

recommendations for how the community could 

collectively drive more transparent, accessible, 

reliable, and scalable remote sensing in forest 

carbon project design and MMRV, drawing on our 

synthesis of stakeholder viewpoints . Based on 

these insights, we argue that a key step will be 

establishing a broad consensus on what defines a 

http://carbon-direct.com
https://www.cambridge.org/core/books/climate-change-2022-impacts-adaptation-and-vulnerability/161F238F406D530891AAAE1FC76651BD
https://www.cambridge.org/core/books/climate-change-2022-impacts-adaptation-and-vulnerability/161F238F406D530891AAAE1FC76651BD
https://www.cambridge.org/core/books/climate-change-2022-impacts-adaptation-and-vulnerability/161F238F406D530891AAAE1FC76651BD
https://doi.org/10.1126/science.ade3535
https://www.science.org/doi/10.1126/science.ade3535
https://www.science.org/doi/10.1126/science.ade3535
https://www.science.org/doi/10.1126/science.ade3535
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rigorous remote sensing dataset and methodological 

approach. Ultimately, we recommend creating an 

inclusive and diverse stakeholder consortium with 

the goal of addressing existing ambiguity in MMRV . 

Background
To understand forest carbon sequestration, we need 

to measure forest structural attributes, such as tree 

size and tree density . Yet individually measuring 

every tree in a forest is impractical . The science of 

forest carbon measurement can be traced back to 

the establishment of large-scale, long-term forest 

monitoring plots associated with national forest 

inventory programs in the 1920s, such as the US 

Forest Service’s Forest Inventory and Analysis 

Program .6 Later, more research-oriented plots were 

established in the 1980s, such as the 50-hectare 

plot on Barro Colorado Island, Panama—one of 

the oldest and most intensively studied forest 

dynamics plots on Earth .7 This 50-hectare plot is 

part of a global network of plots that have been 

used to study forest carbon dynamics for decades .8 

These plots allow researchers to track changes in 

tree growth, mortality, and recruitment over time, 

providing valuable data on changes in carbon stocks 

within forests . 

6. Forest Service, United States Department of Agriculture. 2023 Jan 13. Forest Inventory and Analysis. [accessed 2025 Jun 12]. https://research .fs .usda .
gov/programs/fia .

7. Barro Colorado Island. 2017 Feb 6. ForestGEO. [accessed 2025 Jun 16]. https://forestgeo .si .edu/sites/neotropics/barro-colorado-island .

8. ForestGEO Sites. 2017 Feb 6. ForestGEO. [accessed 2025 Jun 16]. https://forestgeo .si .edu/sites-all .

9. “Diameter at breast height” refers to measuring the diameter of a tree at 1.37 meters above ground (average person’s breast height). 

10 . AGB is often used as a proxy for forest carbon stocks due to its relative ease of estimation via remote sensing-based datasets and well-established 
conversion factors . While AGB does not capture the full carbon pool, it offers a practical basis for monitoring and can be complemented with models to 
estimate below-ground biomass and soil carbon for a more complete picture .

11 . Advancements in terrestrial laser scanning systems are beginning to provide next-generation approaches for allometric modelling . These data offer 
millimeter-level characterization of tree structure that can help to reduce the over-generalization of allometric modeling and provide enhanced estimates of 
total volume at tree scale for AGB estimation .

Foresters use allometric equations and field-based 

measurements to estimate the amount of carbon 

stored in living trees (i.e., forest carbon stocks). 

Allometric equations rely on tree characteristics, 

such as diameter at breast height,9 tree height, and 

tree species to estimate above-ground biomass 

(AGB) based on statistical relationships.10 Although 

widely used, allometric equations have limitations . 

First, there is uncertainty around how well specific 

equations generalize to new contexts, and which 

forests they are appropriate for . Secondly, directly 

measuring individual trees is expensive and time 

consuming . Therefore, AGB estimates based on 

field-based measurements and allometric equations 

can only reliably provide carbon stock estimation for 

a small fraction of project areas .11 

Forest structural attributes are 
tree height, canopy structure  
(e.g., cover, layering, and gaps), 
tree density, crown size, above-
ground biomass, and other 
variables that describe forests  
in three dimensions.

http://carbon-direct.com
https://research.fs.usda.gov/programs/fia
https://research.fs.usda.gov/programs/fia
https://forestgeo.si.edu/sites/neotropics/barro-colorado-island
https://forestgeo.si.edu/sites/neotropics/barro-colorado-island
https://forestgeo.si.edu/sites/neotropics/barro-colorado-island
https://forestgeo.si.edu/sites-all
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Over the past two decades, advances in remote 

sensing datasets have allowed foresters to analyze 

sites remotely . This has helped to overcome 

numerous challenges in field-based data collection . 

Many remote sensing technologies (e .g ., optical 

satellite imagery, radar)12 can be used together 

with field measurements to generate spatially 

continuous modelled estimates of forest attributes 

across an entire area . More recently, lidar data13 

offer integration opportunities to improve the 

efficiency of direct measurement and field sampling . 

Some remote sensing datasets (e .g ., the Landsat 

timeseries)14 offer multiple observations through 

time, providing higher temporal resolution . These 

datasets provide a means to estimate changes in 

forest attributes through time, a critical requirement 

for multiple forest carbon MMRV applications .15, 16

Foresters and scientists are currently exploring 

how remote sensing data and traditional field 

measurements can be combined within machine 

learning and artificial intelligence (AI) workflows 

to optimize estimates of forest characteristics .17, 18 

This could improve the transparency, accessibility, 

reliability, and scalability of forest carbon MMRV 

(figure 1). Field-based measurements (e.g., manual 

12 . Radar is an active remote sensing technology that emits radio waves and measures the signals reflected back from Earth’s surface to estimate forest 
structural attributes like AGB .

13 . Lidar emits laser pulses and measures the time delay and intensity of returns to estimate forest structural attributes like AGB .

14 . Landsat satellites capture multispectral data, supporting applications such as land use monitoring, agriculture, forestry, water management, and climate 
change studies . The current satellites, Landsat 8 and Landsat 9, offer high-quality imagery across multiple spectral bands with a 16-day revisit time for each 
satellite .

15. Kennedy RE, Yang Z, Cohen WB. 2010. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — Temporal 
segmentation algorithms. Remote Sensing of Environment. 114(12):2897–2910. doi:10 .1016/j .rse .2010 .07 .008. [accessed 2025 Jul 3]. https://www .
sciencedirect .com/science/article/pii/S0034425710002245 .

16. Coffield SR, Vo CD, Wang JA, Badgley G, Goulden ML, Cullenward D, Anderegg WRL, Randerson JT. 2022. Using remote sensing to quantify the 
additional climate benefits of California forest carbon offset projects. Global Change Biology. 28(22):6789–6806. doi:10 .1111/gcb .16380. [accessed 2025 Jul 
3]. https://onlinelibrary .wiley .com/doi/abs/10 .1111/gcb .16380 .

17. White JC, Coops NC, Wulder MA, Vastaranta M, Hilker T, Tompalski P. 2016. Remote Sensing Technologies for Enhancing Forest Inventories: A Review. 
Canadian Journal of Remote Sensing. 42(5):619–641. doi:10 .1080/07038992 .2016 .1207484. [accessed 2025 Jul 3]. https://doi .org/10 .1080/07038992 .2016 .1
207484 .

18 . Common forest characteristics include timber volume, stand height, and diameter classes .

tree measurement) remain fundamental to forest 

management and operations, but combining 

them with high-quality remote sensing data could 

enhance the cost-effectiveness of forest inventories 

by extending their insights to broader areas . 

Remote sensing data and modeling approaches 

can help to support three key forest carbon  

project stages: 

1. Conducting project planning and feasibility: 

Remote sensing approaches can be useful 

when identifying suitable project areas, and 

when dynamic baselines (see the Registries and 

dynamic baselines section of this report) and 

additionality analyses are being investigated . 

Spatially continuous modelling 
means that estimates of forest 
attributes are available across an 
entire area of interest, rather than 
just at isolated sample points.

http://carbon-direct.com
https://doi.org/10.1016/j.rse.2010.07.008
https://www.sciencedirect.com/science/article/pii/S0034425710002245
https://www.sciencedirect.com/science/article/pii/S0034425710002245
https://www.sciencedirect.com/science/article/pii/S0034425710002245
https://doi.org/10.1111/gcb.16380
https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.16380
https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.16380
https://doi.org/10.1080/07038992.2016.1207484
https://doi.org/10.1080/07038992.2016.1207484
https://doi.org/10.1080/07038992.2016.1207484
https://doi.org/10.1080/07038992.2016.1207484
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2. Determining project area eligibility: Remote 

sensing can help determine eligibility when 

historical land use and land cover is being 

assessed for compliance with registry standards . 

3. Monitoring project performance: Remote 

sensing can be utilized for ongoing monitoring, to 

detect carbon reversals (release of carbon to the 

atmosphere), and to estimate performance for 

credit issuance through time . 

At each of these stages, a project developer 

typically needs to know where forests are (e .g ., 

using spatial information on forest cover) and 

how much carbon is present (e.g., AGB). Remote 

sensing-based products and modelling frameworks 

are capable of providing estimates of these critical 

forest attributes across broad spatial areas and 

through time with greater efficiency and at a lower 

cost than using more labor-intensive, traditional 

field-based methods .

However, understanding the reliability and practical 

applications of remote sensing data products can 

be a technical and opaque process. This can lead 

to either overestimating the abilities of remote 

sensing or blanket skepticism of it . If validated with 

field observations, remote sensing approaches have 

the potential to reliably monitor changes in carbon 

stocks over much larger areas, with much higher 

temporal resolution, than what is possible with field 

data alone . Yet the inherent variability, complexity, 

and idiosyncrasies of ecosystems—such as species 

composition, underlying soil types, phenological 

stage, health, and growth phases—pose real 

challenges for making broad inferences about forest 

structure . Consequently, all ecological inferences 

have an element of uncertainty (box 1). This is true 

of field-based measurement methods as well as 

remote sensing methods . 

High-quality field data, used to train and validate 

models, is essential for generating reliable remote 

sensing products. Importantly, ground-truthing 

is not a one-time effort—ongoing, temporally 

representative field data collection is critical for 

capturing changes over time and ensuring that 

models remain accurate as forest conditions 

evolve . While field methods are resource-intensive 

and spatially constrained, robust remote sensing 

models can help extend the value of existing 

datasets, reduce the burden of collecting field 

data for under resourced project developers, and 

improve accessibility to the VCM by reducing the 

cost of MMRV .

Transparency Reliability ScalabilityAccessibility

Principles of for high-quality remote
sensing for forest carbon MMRV

Figure 1 . Principles of high-quality remote sensing for forest carbon MMRV . Source: Carbon Direct . 

http://carbon-direct.com
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Box 1. What is uncertainty in remote sensing for forest carbon MMRV and why does it matter?  

Uncertainty refers to the range of possible errors in estimating forest structural attributes, like 

forest carbon stocks, due to limitations in sensors,19 models, data resolution, or incomplete ground 

validation. Uncertainty arises from factors such as sensor noise, model assumptions, limited or 

non-representative training data, and the natural variability of ecosystems . All estimates of forest 

attributes, whether based on remote sensing data or field-based measurements, will carry some 

uncertainty . High levels of uncertainty can affect the credibility of emissions estimates, the volume 

of credit issuance, and market trust . Determining the level of uncertainty that is tolerable for a 

specific application is a decision-making process . Currently this process lacks broad consensus for 

best practices across industry stakeholders and experts . Further technical details on uncertainty are 

included in this report’s Appendix .

19 . Variability among sensors and data resolutions can be addressed with advanced modeling approaches, but sensor-related uncertainty can also stem 
from sensors’ detection limits which are harder to mitigate .

20 . Surface reflectance data refers to the measurement of the fraction of incoming sunlight that a surface reflects at specific wavelengths . It is commonly 
used in remote sensing to analyze vegetation, soil, water, and land cover conditions .

21 . Sentinel-2, a satellite designed to provide high-resolution optical imagery for land monitoring, is part of the Copernicus mission—the Earth observation 
component of the European Union’s Space programme. It carries a multispectral instrument that captures data in 13 spectral bands, supporting applications 
like vegetation health assessment, soil and water monitoring, and disaster management .

22 . Optical data products are limited to capturing only the outer layer of vegetation, as they rely on reflected sunlight, which cannot penetrate the canopy to 
reveal internal structural attributes . As a result, they cannot provide information on the vertical distribution of vegetation or internal canopy structure—key 
components of forest biomass . This limitation leads to difficulty distinguishing between medium- and high-biomass forests, a challenge commonly referred 
to as “signal saturation .”

23. Sentinel-1 is part of the Copernicus mission—the Earth observation component of the European Union’s Space programme. This satellite is focused on 
all-weather, day-and-night radar imaging . It carries a C-band SAR instrument that provides high-resolution data for applications such as land deformation 
monitoring, flood mapping, and maritime surveillance .

24. European Space Agency. c2025. Biomass Mission Overview | Earth Online. [accessed 2025 Jul 3]. https://earth .esa .int/eogateway/missions/biomass/
description .

Remote sensing-based data products like canopy 

height maps and AGB maps are derived from three 

primary underlying data sources, each with their 

own strengths and limitations: 

1. Surface reflectance data20 from passive 

optical sensors on satellites, such as Landsat 

or Sentinel-2,21 are the most commonly used 

data for forest carbon project applications 

because they are freely available over broad 

temporal and spatial extents . Although they 

are useful for monitoring changes in land cover 

(e .g ., conversion of forest to bare ground or 

agriculture), they cannot reliably measure forest 

structural attributes in most contexts and are 

prone to occlusion in humid regions because of 

persistent cloud cover .22 

2. Synthetic aperture radar (SAR) data, such as 

data derived from the Sentinel-123 satellite or the 

recent launch of the European Space Agency 

Biomass mission,24 can provide forest structure 

information. Unlike passive optical sensors, SAR 

sensors can operate in a wide range of weather 

conditions (e.g., cloud cover) and at night. This 

is particularly beneficial in regions with frequent 

http://carbon-direct.com
https://earth.esa.int/eogateway/missions/biomass/description
https://earth.esa.int/eogateway/missions/biomass/description
https://earth.esa.int/eogateway/missions/biomass/description
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cloud cover, such as tropical rainforests and 

coastal regions . SAR data, like passive optical 

data, can saturate in forests with medium to 

high biomass, so it has not been entirely reliable 

for describing forest characteristics in dense 

tropical areas to date .25 Due to sensor sensitivity 

constraints, it can also be challenging to use 

SAR data to monitor forest carbon in areas with 

very low forest cover .

3. Lidar data, which are produced using laser 

pulses capable of penetrating into dense 

forest canopies . This process, called laser 

scanning, overcomes the saturation issues 

seen with passive optical and SAR data and 

is often used in forest carbon projects . Laser 

scanning systems can be attached to ground-

level terrestrial scanners, drones, aircraft, or 

satellites .26 Lidar data provide highly accurate 

estimates of canopy height, forest density, 

structural variability, and terrain . Lidar sensors 

onboard aircraft (i.e., aerial lidar) give the most 

detailed structural measurements of forested 

landscapes of any widely used sensor . However, 

these data are expensive, leading to reduced 

spatial coverage and fewer (if any) repeated 

measurements . Furthermore, estimating forest 

biomass from lidar-derived canopy height 

measurements is usually not possible without 

25 . However, the European Space Agency’s recently launched Biomass mission may be able to overcome some of these prior shortcomings by operating at 
a longer wavelength (P-band).

26. NASA’s Global Ecosystem Dynamics Investigation (GEDI) mission is a particularly influential example of spaceborne lidar data, which is freely available 
throughout many areas of the globe . These data are highly valuable for global and regional forest carbon estimates, but are sample-based (i .e ., not spatially 
continuous, covering 4% of Earth’s surface, and limited to +/- 52° latitude) and have a relatively coarse spatial resolution (i.e., 25 meters). These technical 
limitations mean that these data are unsuitable for measuring individual tree heights on their own, but they can still be used to calibrate higher-resolution 
canopy height models that are already trained .

27 . Data providers have commonly used classical machine learning methods, such as sampling random forests, but deep learning architectures (e .g ., 
convolutional neural networks, autoencoders, vision transformers) are increasingly used to unlock more advanced data products.

accompanying field data (e .g ., diameter at 

breast height measurements). 

Data fusion techniques combine multiple remote 

sensing datasets with machine learning modeling 

to enhance data products.27 Increasingly, a diverse 

range of remote sensing datasets are available . 

Data fusion promotes the strengths of individual 

datasets (e .g ., repeated measurements and 

globally available optical imagery, or structural 

characterizations from aerial lidar) to produce data 

products with greater temporal resolution, spatial 

resolution, and increased spatial coverage . Data 

fusion can unlock advanced applications of remote 

sensing for project design, siting, and MMRV . Some 

data products must be purchased from commercial 

data providers, while others are freely available for 

public use .

Machine learning is a way 
for computers to learn from 
data and make decisions or 
predictions without being directly 
programmed for every task.

http://carbon-direct.com
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Meta’s Every Tree Counts initiative is an example 

of a data fusion approach that generates high-

resolution global estimates of tree canopy height.28 

By integrating Maxar29 imagery and aerial lidar data 

within a deep learning framework, Meta produced 

an open source, freely available model (hereafter 

referred to as “Meta’s model”) capable of predicting 

canopy height at submeter resolution worldwide .30 

Meta’s model produces canopy height maps at 

finer spatial resolution than prior maps, in part, 

because it uses high-resolution Maxar imagery, 

28. Tolan et al. 2023. Global Canopy Height. Google Earth Engine Apps. [accessed 2025 Jul 3]. https://meta-forest-monitoring-okw37 .projects .earthengine .
app/view/canopyheight .

29. Maxar Intelligence & Maxar Space Systems. c2025. Home. [accessed 2025 Jul 3]. https://www .maxar .com/ .

30. Tolan J, Couprie C, Brandt J, Spore J, Tiecke T, Johns T, Nease P. 2024 Apr 22. Using Artificial Intelligence to Map the Earth’s Forests. Meta 
Sustainability. [accessed 2025 Jul 3]. https://sustainability .atmeta .com/blog/2024/04/22/using-artificial-intelligence-to-map-the-earths-forests/ .

31. Airbus. c2025. Satellite imagery | Earth observation satellites. [accessed 2025 Jul 3]. https://www .airbus .com/en/products-services/space/earth-
observation/satellite-imagery .

with a spatial resolution of ~0.6 meters, to make 

predictions . A key advantage of Meta’s model is 

that it can be applied to multiple image sources 

(e .g ., Airbus,31 Maxar), which helps to increase its 

accessibility . Compared to other remote sensing 

data sources, Meta’s model has the unique potential 

to optimize across key factors: spatial resolution, 

temporal resolution, and ability to provide insights 

into forest structure (figure 2). Meta’s computer 

vision expertise, and significant computational 

resources contributed to the model’s versatility and 

Copernicus Sentinel-2 L2A data [2025-07-01]. Latitude = 17.27475 Longitude = -96.07212.
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training (box 2). The model’s estimates were based 

on millions of satellite images to help it learn spatial 

patterns on the landscape . 

Meta’s model recognizes features like tree crowns 

and shadows in images in much the same way 

as a human would interpret them . This allows the 

model to use spatial context (e .g ., a long shadow is 

associated with a tall tree) to increase its accuracy 

in predicting canopy heights . When trained and 

validated with high-quality field data, 

deep learning approaches can improve predictive 

accuracy compared to traditional machine learning 

models and help address core challenges of data 

availability, resolution, and coverage . By reducing 

costs and enhancing methodological transparency, 

Meta’s model aims to help pave the way for more 

reliable and accessible MMRV . We discuss how 

examples of these types of solutions are positioned 

to unlock more transparent, accessible, reliable, and 

scalable MMRV in the final section of this report .

Forest Data Trade-offs: Resolution and
Structural Insight Across Sources

Figure 2. Remote sensing data sources vary in their spatial resolution (i.e., pixel size), temporal resolution (i.e., the 
frequency with which imagery available), and ability to provide insights into forest structure. Meta’s model has the 
potential to optimize across these three factors. Note: CHM = canopy height map, GEDI = Global Ecosystem Dynamics 
Investigation, NAIP = National Agriculture Imagery Program (United States). Source: Carbon Direct.

http://carbon-direct.com
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Box 2. Training, validating, and calibrating remote sensing-based models  

The process of building remote sensing-based models to estimate forest carbon attributes can be 

broken into three steps:

1. Training: First, scientists train the model by feeding it data for areas where both satellite 

imagery (or other input data) and field-based measurements are available and known. 

2. Validation: Once the model is trained, scientists validate the model by testing it on data it has 

not seen before to see how well it performs, much like checking if a student really understands 

a lesson . 

3. Calibration: Finally, scientists may calibrate a model by adjusting it to make its predictions line 

up even better with real-world measurements for a specific area or project . 

Developers can expect the validation step to be especially important in scenarios where researchers 

are evaluating if a model that was trained in one forest type (e.g., temperate conifer forest) can be 

reliably applied to another forest type (e.g., tropical broadleaf forest). For example, Meta trained 

their model in forests in the United States where high-resolution satellite imagery and lidar-based 

measurements of canopy height were both known .32 To evaluate how well their model performed in 

a tropical forest, Meta validated it in specific locations in Brazil, by quantifying model errors where 

canopy height was also known . 

When the validation step reveals that a model trained in one location makes estimates that are 

consistently too high or too low (i.e., biased), scientists may calibrate these model instances.

Courses on these topics are available from NASA33 and Coursera .34

32. Tolan J, Yang H-I, Nosarzewski B, Couairon G, Vo HV, Brandt J, Spore J, Majumdar S, Haziza D, Vamaraju J, et al. 2024. Very high resolution canopy 
height maps from RGB imagery using self-supervised vision transformer and convolutional decoder trained on aerial lidar . Remote Sensing of Environment . 
300:113888. doi:10 .1016/j .rse .2023 .113888. [accessed 2025 Feb 19]. https://www .sciencedirect .com/science/article/pii/S003442572300439X .

33. NASA Applied Sciences. 2025. Applied Remote Sensing Training Program. [accessed 2025 Jul 3]. https://appliedsciences .nasa .gov/what-we-do/
capacity-building/arset .

34. Coursera. c2025. Remote Sensing Image Acquisition, Analysis and Applications. [accessed 2025 Jul 3]. https://www .coursera .org/learn/remote-sensing .

http://carbon-direct.com
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Stakeholders 
The VCM comprises a diverse range of stakeholders each with a concerted interest in how remote 

sensing data and modeling workflows are being integrated into project design and MMRV (table 1). 

Registries, in particular, are increasingly requiring that remote sensing data be used to support  

dynamic baselining . 

Table 1. Key stakeholders with an interest in remote sensing for forest carbon project design, measurement, 
monitoring, reporting, and verification

Stakeholder Description

Buyers Carbon credit buyers (e.g., large corporations) use credits to offset emissions within 
their supply chain to help reach their climate goals . Buyers are not a monolith and 
often have their own quality criteria by which they evaluate project quality .

Data and analysis providers Data and analysis providers, whether commercial or open-source, encompass 
private companies, academic labs, non-governmental organizations, and 
government agencies . These entities generate products on forest attributes (e .g ., 
above-ground biomass, canopy height, or other structural metrics) using a mix 
of proprietary and publicly available methods . Some entities license robust, per-
hectare data products derived from proprietary models, while others leverage 
in-house expertise and resources to deliver free, open data products, computational 
tools, and analysis pipelines . The boundary between commercial and open providers 
is fluid: most organizations can release both licensed and freely accessible outputs 
(e.g., Meta’s canopy height map).

Domain experts 
 

Domain experts possess expertise in a specific area such as remote sensing, 
machine learning, computer vision, and related fields that are advancing new 
technology and techniques . Domain experts can come from academia, government 
agencies, non-profit or local community organizations, and technology companies .

Project developers Project developers are responsible for registering a carbon project with a registry 
and delivering credits . Among developers, technical capacity and resources for 
integrating remote sensing varies from highly sophisticated to very limited .

Registries and methodology 
working groups

Registries are the regulatory bodies that certify carbon projects and oversee credit 
issuance . They are responsible for ensuring that forest carbon projects comply with 
specific methodologies for project design and measurement, monitoring, reporting, 
and verification (MMRV). Registries often form working groups with domain experts 
to develop these methodologies . Some registries are starting to centralize digital 
MMRV in-house rather than ask developers to conduct the remote sensing analyses 
themselves . 

Validation and verification 
bodies (VVBs)

VVBs are accredited third-party organizations that audit project methods to ensure  
that they comply with registry standards and methodologies .

http://carbon-direct.com
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Registries and dynamic baselines
Registries are increasingly recognizing that remote 

sensing data and modeling workflows can and should 

play a central role in advancing the transparency, 

reliability, and accessibility of MMRV . Some registries 

have consequently taken these approaches in-

house, in the effort to standardize them and minimize 

potential project developer capacity constraints . 

Many registries’ methodologies now require that 

project performance be estimated using remote 

sensing techniques, with methodologies that use a 

dynamic baseline being a core example .

Projects establish a dynamic baseline by selecting 

control plots located outside of a project’s boundary 

to use as a basis of comparison when estimating the 

carbon stock changes within the project’s boundary 

that are attributable to the project activity . When 

selecting control plots, remote sensing data can be 

used to maximize similarity of control plots to the 

project area (in terms of ecological and historical 

land management conditions). Calculating carbon 

stock changes based on a dynamic baseline typically 

involves monitoring changes to a remote sensing-

based carbon stock estimate (commonly referred 

to as a “stocking index”) at hundreds or thousands 

of locations through time . Stocking indices might 

refer to changes in AGB or vegetation height .35 

These serve as proxies for forest carbon, but project 

developers may use a number of stocking indices 

that vary in their suitability for this purpose . 

35 . Souza CM, Roberts DA, Cochrane MA . 2005 . Combining spectral and spatial information to map canopy damage from selective logging and forest fires . 
Remote Sensing of Environment. 98(2):329–343. doi:10 .1016/j .rse .2005 .07 .013. [accessed 2025 May 1]. https://www .sciencedirect .com/science/article/pii/
S0034425705002385 .

Remote sensing data are therefore especially 

valuable for dynamic baseline approaches, as 

traditional field measurements are often too 

costly and logistically challenging to implement 

at landscape scales . Registries are continuing to 

recognize that project developers vary considerably 

in their technical and resource capacity for both 

field-based and remote sensing-based MMRV 

activities . This has prompted some registries to begin 

implementing remote sensing-based, “digital MMRV” 

approaches themselves (e .g ., Isometric, Ecosystem 

Restoration Standard), which may portend a shift 

toward greater centralization of MMRV . 

Dynamic baselines are an 
approach to forest carbon 
accounting that continuously 
updates estimates of carbon 
changes in the baseline scenario 
(i.e., what would have happened 
without the carbon project) using 
real-world data from comparable 
control areas.

http://carbon-direct.com
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Barriers to high-quality 
remote sensing for MMRV
There is considerable consensus among 

stakeholders regarding the potential for 

remote sensing data and models to enhance 

MMRV reliability and rigor. However, significant 

barriers are inhibiting the accessibility of these 

tools and their adoption . These barriers fall 

into three general themes: (1) governance and 

methodological alignment, (2) remote sensing 

data constraints, and (3) gaps in knowledge and 

infrastructure (figure 3). 

Governance and 
methodological 
alignment
This theme focuses on the lack of clarity, 

consistency, and consensus around integrating 

remote sensing into forest carbon MMRV. 

Stakeholders clearly articulated a desire for 

institutional guidance and level-setting among 

developers, registries, and third parties on how 

to operationalize and assess remote sensing 

workflows and methodologies. Three main 

challenges fall under this theme, labeled A-C  

and described further below.

A
B

F

E

H

C

D

G

B
G

BARRIERS

A.

B.

C.

D.

E.

F.

G.

H.

RECOMMENDATIONS

Figure 3. Barriers to unlocking more transparent, 
accessible, reliable, and scalable remote sensing for 
forest carbon MMRV . These barriers fall into three main 
categories: governance and methodological agreement, 
remote sensing data constraints, and gaps in knowledge 
and infrastructure . Source: Carbon Direct .
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A. There is a lack of clarity, guidance, and 

consensus on what best practice looks like for 

MMRV. It is often unclear which data products and 

models represent best practice, making it difficult 

for project developers and buyers to navigate and 

implement high-quality, remote sensing-based, 

monitoring frameworks . In most cases, developers 

are responsible for implementing credible, 

conservative, and scientifically rigorous MMRV 

regardless of their technical remote  

sensing capacity . 

Developers can be hesitant to adopt new remote 

sensing approaches for two reasons: (1) it is 

unclear which remote sensing approaches will be 

accepted by registries, validation and verification 

bodies (VVBs), and credit buyers; and (2) 

implementing remote sensing analytics involves 

significant cost, which means that developers need 

to feel assured that the investment is worthwhile . 

Developers are hesitant to invest resources 

in remote sensing for MMRV unless they have 

assurance that registries, VVBs, and credit buyers 

Rainforest morning fog. Source: Adobe Stock.
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will deem their MMRV approaches acceptable . 

Meanwhile, prospective corporate offtake 

partners are hesitant to invest in credit purchases 

without confirming that science-based MMRV are 

foundational to a project’s credit generation . 

Working groups like the Science for High Integrity 

Frameworks to Transform Carbon Markets36 and 

the NASA Carbon Monitoring System37, 38 are 

advancing highly valuable technical leadership 

in remote-sensing based MMRV . These groups 

offer positive starting points and could help in 

the effort to promote a broader consortium . This 

consortium would provide a forum for registries, 

buyers, developers, and other stakeholders to come 

together to prioritize standardization and guidance 

for the use of remote sensing datasets, workflows, 

and applications in forest carbon MMRV. Ultimately, 

clear and explicit explanations for how to integrate 

remote sensing into protocol requirements and 

carbon accounting practices would be helpful . Some 

existing examples include the American Carbon 

Registry (ACR), which is developing a framework 

on quantification of forest carbon using remote 

sensing, and Meta, which is working with Carbon 

Direct to release a guide for applying their canopy 

height map and underlying model to forest carbon 

projects . These are welcome contributions, but a 

broader industry effort is also needed .39 

36. Science for High Integrity Frameworks to Transform Carbon Markets (SHIFT-CM). 2024. Developing Good Practice Guidance for Natural Climate 
Solutions Research. [accessed 2025 Jul 2]. https://docs.google.com/document/d/1cuWO5dei1wZo3DFxW9dlOzxzmY4e8MBmMU2Lvro8YB4/
edit?tab=t .0#heading=h .p3etfhp4d0g1 .

37 . Established in 2010, the NASA Carbon Monitoring System is a science initiative that supports the development of knowledge and prototyping 
capabilities across a range of systems, scales, and regions, with a focus on remote sensing applications for MMRV systems . Scientists funded by NASA’s 
Carbon Monitoring System use remotely sensed data, computational tools, scientific expertise, and system-level capabilities available through the NASA 
Earth Science program . 

38. NASA Carbon Monitoring System. nd. Home. [accessed 2025 Jun 18]. https://carbon .nasa .gov/cms/ .

39 . Carbon Direct and Meta . 2025 . Integrating Meta’s Canopy Height Map into Forest Carbon Methodologies: A Tactical Guidebook . https://www .carbon-
direct .com/research-and-reports/meta-guidebook

B. Registries face difficulty balancing the need for 

methodological flexibility with the need to provide 

clear, actionable guidance in a quickly evolving 

field. Limited resources, lack of data transparency, 

and the rapid emergence of novel remote sensing 

datasets contribute to regulatory uncertainty 

and make rigorous scientific evaluation difficult . 

Registries expressed concerns about their technical 

and operational capacity to properly assess new 

and existing datasets, particularly at the pace that 

novel data products are being released .

Rigorously assessing new remote sensing models 

and datasets requires technical capacity, is time-

intensive, and must be done in an idiosyncratic way 

for each dataset . While some registries are bringing 

remote sensing expertise and modeling in house, 

The decision is [to] go  
with something that doesn’t 
have a broad consensus or 
do nothing.”

—Project developer, on  
choosing remote sensing data 
and workflows
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the reality is that most registries do not have the 

resources for this, which results in many remote 

sensing MMRV approaches remaining in a state of 

regulatory uncertainty . For example, aside from its 

use in ACR’s IFM v2 .1 methodology40 as a matching 

variable for merchantability, Meta’s global canopy 

height dataset lacks explicit approval from registries 

and VVBs for other applications .41 

Lack of alignment on what constitutes a high-quality 

remote sensing framework for MMRV also stems 

from the fact that registries, corporate investors, 

and credit buyers each have their own criteria for 

evaluating high-quality CDR . Additionally, private 

data providers and registries are not always 

40. American Carbon Registry [ACR]. 2024. Improved Forest Management On Non-Federal U.S. Forestlands, Version 2.1. [accessed 2025 Jul 2]. https://
acrcarbon.org/wp-content/uploads/2022/07/ACR-Methodology-IFM-on-Non-Federal-US-Forestlands-v2_1-20240701.pdf .

41 . At the time of this writing, ACR is close to releasing a more comprehensive framework to guide the use of remote sensing for their methodologies .

transparent about the methods they use to train and 

test models in order to protect intellectual property 

(IP), further complicating the ability of registries to 

provide clear guidelines . There is an opportunity to 

shift from competition to collaboration—enabling 

private actors to build trust in carbon markets by 

balancing IP protection with greater transparency . 

Some developers and diligence providers have 

noted that this can limit the use of new remote 

sensing datasets, because information on how 

the data were generated is often viewed as 

being fundamental for their scientific evaluation . 

These challenges highlight the need for an MMRV 

consortium where registries can work together, with 

support from the scientific community, to define 

clear criteria for high-quality remote sensing data 

and strike a better balance between IP protection 

and transparency .

C. Validation and calibration is hindered by a 

lack of standardization and consensus on how 

to quantify and report uncertainty. Without data 

specific to the project, or at least the project’s forest 

type, developers must rely on existing uncertainty 

estimates that may or may not be appropriate for 

the project context . The data that are available 

for local calibration and validation of AGB, often 

referred to as “ground-truth data,” usually come 

from forest inventory plots that are measured in the 

field . AGB estimates derived from forest inventory 

plots are based on allometric equations, which have 

their own uncertainties and systematic biases, 

[T]hey get pitched 
something new every other 
week [. . .] it’s just a barrage 
of information being thrown 
at them and they have no 
way to parse it.”

—Project developer, on  
registries and the rapid pace of 
remote sensing technology and 
data development
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making them a suboptimal source of truth .42, 43 

Furthermore, the geographic distribution of these 

datasets are skewed toward the Global North, 

while large data gaps exist in the Global South, 

further contributing to inequities in carbon market 

access and influence . This is problematic given 

that a considerable proportion of forest carbon 

projects take place in the Global South, where 

emission abatement costs are generally lowest .44 

Investing in MMRV systems in the Global South is 

a critical need because projects in these regions 

face persistent data challenges . Data are often 

difficult to access and unstandardized, making 

calibration and validation efforts labor-intensive 

and idiosyncratic . This presents a significant barrier 

for many landowners and developers . Through the 

consortium we propose, initiatives to improve data 

availability and capacity building could enable more 

equitable participation in carbon markets . Further 

technical details on this barrier are included in this 

report’s Appendix. 

Remote sensing  
data constraints
This theme focuses on technical data limitations 

including availability, spatial and temporal resolution, 

and cost. Two main challenges fall under this theme, 

labeled D-E and described further below.

42. Malhi Y, Phillips OL, Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R. 2004. Error propagation and scaling for tropical forest biomass estimates. 
Philosophical Transactions of the Royal Society of London Series B: Biological Sciences. 359(1443):409–420. doi:10 .1098/rstb .2003 .1425. [accessed 2025 
Mar 25]. https://royalsocietypublishing .org/doi/abs/10 .1098/rstb .2003 .1425 .

43. Demol M, Aguilar-Amuchastegui N, Bernotaite G, Disney M, Duncanson L, Elmendorp E, Espejo A, Furey A, Hancock S, Hansen J, et al. 2024. Multi-scale 
lidar measurements suggest miombo woodlands contain substantially more carbon than thought. Commun Earth Environ. 5(1):1–11. doi:10.1038/s43247-
024-01448-x. [accessed 2025 Apr 25]. https://www.nature.com/articles/s43247-024-01448-x .

44. Karnik A, Kilbride JB, Goodbody TRH, Ross R, Ayrey E. 2025. An open-access database of nature-based carbon offset project boundaries. Sci Data. 
12(1):581. doi:10.1038/s41597-025-04868-2. [accessed 2025 Apr 24]. https://www.nature.com/articles/s41597-025-04868-2 .

D. Many data products with higher utility for MMRV 

are proprietary and costly to access.  

A majority of project developers noted that they 

would like to integrate remote sensing biomass 

datasets into MMRV approaches, but that these 

datasets are prohibitively expensive at the required 

spatial extents, or are not easily modified for 

evaluating AGB estimates over space and time . 

Biomass products are generally purchased on a 

per-area basis and the vast majority of developers 

we spoke to emphasized that purchasing these 

data is not economically viable for their required 

areas and temporal frequency . As more registries 

require some degree of dynamic baselining 

(which are likely to evolve alongside datasets and 

analytical frameworks) developers will need to 

monitor greater spatial extents (see the Registries 

and dynamic baselines section of this report). 

Similar to biomass products, the cost of purchasing 

high-resolution remote sensing imagery is 

prohibitive for many developers . They expressed an 

interest in more affordable and centralized models 

to reduce financial strain . Some newer registries 

have pushed for more centralized, digital MMRV . 

This is partly motivated by the cost and technical 

capacity burdens smaller project developers face as 

well as by the lack of clear, scientific consensus on 

which datasets are appropriate for specific projects 

and purposes .
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E. Insufficient temporal and spatial resolution in 

datasets suitable for MMRV limits their ability to 

track forest dynamics, early regrowth, disturbance 

events, agroforestry projects, and forest structure 

in small parcels. Remote sensing products generated 

at annual or sub-annual timesteps are critical for 

developers and registries to effectively detect 

changes over time . However, aerial lidar and many 

other high-resolution remote sensing sources (e .g ., 

aerial imagery) are often available for only a single 

point in time, have multi-year gaps between updates, 

or are prohibitively expensive to acquire . Alignment 

among standards and other key market actors could 

create the demand signal needed for these products 

to be generated at more optimal timesteps .  

 

Datasets with high spatial and temporal resolution 

are important for monitoring agroforestry projects, 

forest degradation, and selective harvesting 

regimes .45 Some IFM project developers have 

identified potential in high-resolution remote 

sensing data for monitoring subtle signs of forest 

degradation, like selective logging at project edges . 

However, they remain uncertain as to whether 

current tools are capable of reliably detecting 

such nuanced structural changes . More targeted 

approaches, such as regional aerial lidar campaigns 

or drone acquisition, may be required to track 

these changes, but these methods are logistically 

complex and expensive . Even globally available 

remote sensing data with adequate temporal 

frequency often falls short in capturing key forest 

structure attributes, such as AGB and canopy 

height, which are essential for implementing robust 

MMRV approaches . 

45 . Heterogeneous planting designs are particularly difficult to classify and characterize using standard land cover approaches .

Knowledge and 
infrastructure gaps
This theme focuses on the challenges surrounding 

practical implementation of remote sensing 

including stakeholders’ technical experience, lack 

of computational resources, and limited capacity 

to acquire or source suitable validation data. Three 

main challenges fall under this theme, labeled F–H 

and described further below.

F. Lack of expertise and computational resources 

among developers and registries is a considerable 

barrier to introducing remote sensing into MMRV. 

While some larger developers maintain in-house 

teams, smaller and non-profit project developers 

often lack the resources and technical capacity to 

ingest, process, and analyze remote sensing data . 

This is especially true for large project areas and 

high-resolution datasets . Both developers and 

registries noted that keeping pace with new remote 

sensing technologies and products is challenging . 

Developers stated that turnkey, user-friendly remote 

sensing tools and up-to-date technical transfer 

resources would go a long way in promoting best 

practices . While building internal capacity on 

projects is seen as important, outsourcing remains 

common due to resource constraints . However, 

project developers working with Indigenous 

communities and Tribal nations raised concerns 

about data sovereignty and the need to fully vet any 

third-party remote sensing providers .

G. There is skepticism regarding the accuracy and 

reliability of remote sensing-based estimates of 

forest structure. Some of this skepticism is driven 
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by poor corroboration between analogous forest 

structure datasets and field measurements . Some 

developers noted that large errors in estimating 

canopy height hinder their ability to monitor 

changes in canopy cover, making it challenging to 

track forest disturbance and regrowth. Uncertainty 

estimates reported in the scientific literature 

support these concerns .46 Developers, particularly 

those working on ARR projects, noted that 

existing biomass remote sensing products were 

especially insufficient for early-stage, regenerating 

forests . This is problematic because inaccurate 

quantification of carbon stocks within the first 

monitoring period and issuance event can result in 

considerable lost revenues for project developers . 

H. A lack of suitable and project-specific validation 

and calibration data makes it difficult to know 

which data products are suitable for particular 

locations and applications. The developers of 

remote sensing models and data products need 

access to more high-quality ground truth data that 

capture variation in forest structure across forest 

types and management regimes (including privately 

managed forests). Even where global models and 

datasets have been validated, stakeholders still 

require guidance on how to determine where a 

model or dataset can be applied, if previously 

reported model uncertainty estimates apply to 

their project area, and how they should go about 

producing uncertainty estimates that are specific 

to their project .47 Determining where and when a 

model is appropriate is essential for deciding if a 

46. Lang N, Jetz W, Schindler K, Wegner JD. 2023. A high-resolution canopy height model of the Earth. Nat Ecol Evol. 7(11):1778–1789. doi:10.1038/s41559-
023-02206-6. [accessed 2025 Jul 14]. https://www.nature.com/articles/s41559-023-02206-6 .

47. Duncanson L, Hunka N, Jucker T, Armston J, Harris N, Fatoyinbo L, Williams CA, Atkins JW, Raczka B, Serbin S, et al. 2025. Spatial resolution for forest 
carbon maps. Science. 387(6732):370–371. doi:10 .1126/science .adt6811. [accessed 2025 Apr 24]. https://www .science .org/doi/10 .1126/science .adt6811 .

model can be used as is, or if additional validation or 

calibration is needed . 

Unfortunately, there’s no broad consensus in 

academia or the forest carbon project community 

on how to define the geographic area that an 

uncertainty estimate covers . This leads to a lack of 

clarity around which datasets are appropriate for 

A lot of these models  
[. . .] perform much better 
at very high levels of 
biomass [. . .] so that at low 
stocking values you see [. . .] 
erroneous results and those 
are the actual moments 
that matter the most for a 
reforestation project that 
is trying to get to market 
as quickly as possible with 
accurate numbers  
of credits.”

—Project developer, on using 
remote sensing datasets 
for early-stage regeneration 
assessment and crediting
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specific projects and purposes . Some developers 

take it upon themselves to validate and calibrate 

global models with field data from their project 

areas . This lets them create uncertainty estimates 

tailored to each project, but their methods are 

often unique and not transparent . Further, many 

developers lack the resources or expertise to do 

this . It is hard for the industry to quickly evaluate the 

robustness of uncertainty estimates across diverse 

datasets and use cases .

Canopy height map for the state of California, inset showing zoomed in region with input RGB imagery. Source: Tolan J, et al. 2024.  
Very high resolution canopy height maps from RGB imagery using self-supervised vision transformer and convolutional decoder trained on  
aerial lidar. https://doi.org/10.1016/j.rse.2023.113888. Licensed under CC BY 4.0.  
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Building a community: 
Recommendations  
and pathways forward
Our interviews and analysis found a common 

wish among stakeholders—a forest carbon MMRV 

consortium should be built and tasked with 

pioneering actionable and industry-wide standards 

for remote-sensing and MMRV. Forming such 

a consortium could be a critical step in aligning 

forest carbon MMRV practices and improving 

the integrity of the VCM . It should be inclusive 

and diverse, support both technology transfer 

and capacity building, and clearly articulate roles 

and responsibilities (such as those suggested in 

table 2). By systematically linking MMRV science 

and technology with approval bodies (registries 

and VVBs), the consortium could help create a 

more consistent cycle of learning, evaluation, and 

adoption . Representatives of these stakeholders 

would each be critical in the creation of a forest 

carbon MMRV consortium tasked with establishing 

consensus, developing standards, and enacting 

recommendations (figure 4).

Figure 4. Multi-stakeholder consortium concept for implementing remote sensing guidance in forest carbon projects . 
Source: Carbon Direct . 
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Table 2. Recommendations for unlocking more transparent, accessible, reliable, and scalable remote sensing for MMRV of 
forest carbon projects, with relevant stakeholder

Note: All stakeholder opinions should be considered for all opportunities, but each requires a lead actor and some core participants . 
Recommended lead actor(s) are indicated with a double check mark, and stakeholders who should be heavily involved are indicated 
with a single check mark . Registries are likely to require technical advisory bodies that include domain experts to effectively implement 
recommendations .

Stakeholder

Recommendation Buyers Domain 
experts

Data and 
analysis 
providers

Project 
developers Registries VVBs

Define acceptable 
remote sensing 
data and workflows 
that allow flexibility 
as technologies 
evolve.

 

Clearly define 
where specific 
remote sensing 
datasets and 
models are 
geographically 
applicable.

 

Align on the role 
of uncertainty in 
credit issuance.

 

Standardize how 
data providers 
evaluate and report 
uncertainty.  

Create a global 
benchmarking 
dataset.

 

Develop a 
centralized remote 
sensing data portal 
for forest carbon 
MMRV.

 

Apply new deep 
learning models 
to unlock new 
remote sensing 
applications.
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We envision that this consortium would serve as 

a trusted forum for establishing consensus about 

which, and how, remote sensing tools should 

be used; enabling co-development of technical 

standards that industry players can rely on; and 

translating consensus-driven recommendations into 

practice . By fostering cross-sector collaboration, 

this consortium could drive consistent, science-

based advancement while ensuring the system 

remains inclusive, adaptive, and grounded in real-

world needs . 

Based on the barriers we identified above, 

we propose seven recommendations that a 

consortium could prioritize to unlock more 

transparent, accessible, reliable, and scalable 

remote sensing for forest carbon MMRV (figure 5). 

A
B

F

E

H

C

D

G

B
G

BARRIERS

A.

B.

C.

D.

E.

F.

G.

H.

RECOMMENDATIONS

Figure 5. Recommendations for unlocking more transparent, accessible, reliable, and scalable remote sensing for forest 
carbon MMRV . Letters correspond to barriers described in the previous section . Source: Carbon Direct .
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RECOMMENDATION 1: Define acceptable 

remote sensing data and workflows that allow 

flexibility as technologies evolve. This should be 

done while avoiding the pitfalls of standardization 

and centralization (box 3). An important step to 

unlock reliable and accessible remote sensing 

in carbon projects is to develop consensus 

and standardization among registries, project 

developers, VVBs, and domain experts on which 

remote sensing data products are acceptable for 

specific carbon project applications . Registries 

could be well positioned to lead the development 

of robust digital MMRV frameworks, helping to 

allocate resources and accelerate project evaluation 

for buyers . This should be done with significant 

guidance from domain experts, particularly when 

parsing how relevant the latest science is to the 

VCM . However, determining exactly what should 

be standardized, and what, if anything, should be 

centralized, is nuanced and will require careful 

collaboration among stakeholders to avoid potential 

pitfalls (box 3).

RECOMMENDATION 2: Clearly define where 

specific remote sensing datasets and models 

are geographically applicable. Building on 

Recommendation 1, once consensus on broad 

workflows for remote sensing data is reached, we 

must determine the geographic applicability of 

specific datasets . Estimation uncertainty varies 

over space and time . It also changes depending 

on geographic location and the forest type being 

analyzed . Even when datasets are validated and 

uncertainty is reported, there can still be questions

Box 3. Pitfalls to avoid when working toward consensus and standardization of acceptable remote 

sensing datasets and methods for forest carbon project MMRV

1. Being overly prescriptive about acceptable datasets or analytical approaches: The field of 

remote sensing is evolving rapidly, so some flexibility is required to stay in sync with the latest 

science . Different remote sensing approaches may be suitable for different project types 

(e.g., IFM versus ARR) and regions (e.g., tropical versus temperate forests). There is no single 

approach that will work best everywhere .

2. Overwriting place-based traditional knowledge and local data: Solutions must be collaborative, 

inclusive, context-sensitive, and designed to empower local stakeholders, not replace them . 

Where applicable, local and regional data should be prioritized to inform project baselines and 

modeling .

3. Losing transparency as a result of centralization: Any form of centralization must be made 

accessible and transparent to enable regular and robust third-party technical reviews of 

standards as they evolve with the latest science .

4. Asking for full transparency and open access where it is not economically feasible: Commercial 

data and analytics providers will continue to create intellectual property that needs to be 

protected to help incentivize data collection, innovation, and competition .
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about where a dataset can be appropriately used .  

We recommend that domain experts work with 

registries to reach consensus on how to determine 

and report the acceptable spatial, geographic, and 

ecological boundaries (i.e., the inference space) of 

where a model or data product can be used . Most 

remote sensing models are already trained and 

validated using some form of ground-truth data, 

but ground-truthing exercises are often limited 

in geographic scope . The overarching goal for 

alignment and standardization should be to make the 

uncertainty estimates of datasets easier to interpret 

and relevant to decision-making for specific project 

areas and project sizes .

RECOMMENDATION 3: Align on the role of 

uncertainty in credit issuance. Once model limitations 

are clearly defined (Recommendation 2), this step can 

help translate uncertainty into practical terms for the 

market . We recommend that the consortium facilitate 

a public-facing discussion among buyers, registries, 

scientific experts, and standard-setters (e .g ., the 

Integrity Council for the Voluntary Carbon Market,48 

International Carbon Reduction and Offset Alliance)49 

to improve alignment on acceptable levels of 

uncertainty for carbon project applications . This could 

also facilitate an understanding of how uncertainty 

might affect willingness to pay . Nature’s inherent 

48. The Integrity Council for the Voluntary Carbon Market [ICVCM]. c2025. Leading the way to a high integrity Voluntary Carbon Market. [accessed 2025 
Jun 20]. https://icvcm .org/ .

49. International Carbon Offset and Reduction Alliance [ICROA]. c2025. Accrediting Best Practice in Carbon Offsetting. [accessed 2025 Jun 20]. https://
icroa .org/ .

50 . Yang W, Wilkes P, Vicari MB, Hand K, Calders K, Disney M . 2024 . Treegraph: tree architecture from terrestrial laser scanning point clouds . Remote 
Sensing in Ecology and Conservation. 10(6):755–774. doi:10 .1002/rse2 .399. [accessed 2025 Apr 25]. https://onlinelibrary .wiley .com/doi/abs/10 .1002/
rse2 .399 .

51. Rodda SR, Fararoda R, Gopalakrishnan R, Jha N, Réjou-Méchain M, Couteron P, Barbier N, Alfonso A, Bako O, Bassama P, et al. 2024. LiDAR-based 
reference aboveground biomass maps for tropical forests of South Asia and Central Africa. Sci Data. 11(1):334. doi:10.1038/s41597-024-03162-x. [accessed 
2025 Apr 25]. https://www.nature.com/articles/s41597-024-03162-x .

variability will always contribute to uncertainty in 

estimates of forest carbon project performance . There 

is a need to build consensus on how much accuracy 

and precision is considered enough . We could use 

the errors associated with field-based methods as a 

starting point (field-based methods have higher levels 

of error than many may realize).

RECOMMENDATION 4: Standardize how data 

providers evaluate and report uncertainty. This 

recommendation requires that model uncertainties 

are well defined (Recommendation 2), and that 

avenues for market integration are clearly established 

(Recommendation 3). Rather than certifying specific 

datasets, we recommend that domain experts, data 

providers, and registries collaborate on working 

toward more standardized methods for evaluating 

and reporting the reliability of remote sensing data 

products for specific carbon project activities and 

regions . This may require some innovation in how 

private registries and companies can retain their IP 

while also making parts of their model approaches 

and validation process transparent . A key element 

of this standardization process will be aligning on 

what types of data can be used for generating 

uncertainty estimates . A robust form of ground-truth 

data could come from the combination of terrestrial50 

and aerial lidar51 which can create more accurate 
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estimates of AGB than allometric equations applied 

to field inventory plots .52 Another key element of this 

effort will be working with domain experts to outline 

standardized evaluation metrics . For example, domain 

experts should work with registries to confirm what 

the most appropriate error metric is (e .g ., mean 

absolute error, 90% confidence interval, etc.), on what 

spatial scales uncertainty should be calculated, and 

how data providers should report model uncertainty . 

Aligning on answers to these questions will help 

clarify model applications and limitations .53 

RECOMMENDATION 5: Create a global 

benchmarking dataset. With evaluation standards 

clearly established (Recommendation 4), dataset 

benchmarking can be reliably achieved . Domain 

experts and data providers should lead the effort 

of developing a standardized, global benchmarking 

dataset that includes benchmarks that are specific to 

regions, or at least to forest types . This benchmarking 

dataset would contain ground-based estimates of 

AGB and canopy height from intensively sampled sites 

that, at a minimum, cover all of the forest types where 

forest carbon projects are implemented . Efforts to 

incentivize data collection and sharing (e .g ., through 

buyer contracts) should be prioritized in the Global 

South, where there are currently large data gaps and 

where baseline project costs are generally lower . As 

the dataset matures, it should include more detailed 

coverage within specific forest types . Although this 

dataset could be used to train, validate, and calibrate 

52. Demol M, Aguilar-Amuchastegui N, Bernotaite G, Disney M, Duncanson L, Elmendorp E, Espejo A, Furey A, Hancock S, Hansen J, et al. 2024. Multi-scale 
lidar measurements suggest miombo woodlands contain substantially more carbon than thought. Commun Earth Environ. 5(1):1–11. doi:10.1038/s43247-
024-01448-x. [accessed 2025 Apr 25]. https://www.nature.com/articles/s43247-024-01448-x .

53. National Aeronautics and Space Administration [NASA]. 2021. Land Product Validation Subgroup (Working Group on Calibration and Validation C on EOS. 
Aboveground Woody Biomass Product Validation Good Practices Protocol . doi:10 .5067/DOC/CEOSWGCV/LPV/AGB .001. [accessed 2025 Jun 4]. http://lpvs .
gsfc .nasa .gov/documents .html .

54. Puliti S, Lines ER, Müllerová J, Frey J, Schindler Z, Straker A, Allen MJ, Winiwarter L, Rehush N, Hristova H, et al. 2025. Benchmarking tree species 
classification from proximally sensed laser scanning data: Introducing the FOR-species20K dataset. Methods in Ecology and Evolution. 16(4):801–818. 
doi:10.1111/2041-210X.14503. [accessed 2025 Apr 25]. https://onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.14503 .

remote sensing-based models, its primary purpose 

would be to standardize the validation of a models’ 

ability to predict AGB and canopy height in different 

areas of the globe . Crucially, this would provide a 

standardized means to develop uncertainty estimates 

for a wide range of data products . The benchmarking 

dataset would enable a project developer to quickly 

see each potential data product’s performance in 

their forest type . Rather than standardizing the data 

products themselves it would standardize the means 

of evaluating a diverse and evolving array of data 

products and models .

The industry must determine who is responsible for 

maintaining and standardizing this benchmarking 

dataset . The question of who will provide these 

data and how data collection efforts will be funded 

is yet to be answered, though examples of remote 

sensing benchmarking datasets are becoming more 

common .54 Data collected by developers could be 

used for this purpose without necessarily requiring 

data providers to make their data 100% transparently 

and freely available, because this wouldn’t incentivize 

spending large amounts of time and money on 

ground-truth data collection . A coordinated and 

collaborative effort to collect ground-truth data—

specifically to enable more transparent, accessible, 

reliable, and scalable remote sensing for carbon 

project MMRV—would be a standout opportunity 

for philanthropic support, helping to make as much 

of the resulting benchmarking dataset as possible 
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available as a public good . A coordinated effort is 

likely to help create more reliable and transparent 

products, improve conformance with ESG goals and 

corporate social responsibility, and develop a new 

normal for validation of nature-based projects . Data 

collection efforts could also be funded by the price 

premium that more rigorously validated and calibrated 

models would command, which also links well with 

Recommendation 3 . An ensemble of data sources 

and quantification approaches in each benchmarking 

region could be used to help determine the truth . 

Some registries have already evaluated multiple data 

providers and have suggested that an ensemble 

approach could be useful for estimating AGB .

Data that are included in the benchmarking dataset 

should be collected in a way that is conducive to 

validating remote sensing data . Most of the ground-

truth data currently used for this purpose was not 

collected for the explicit purpose of validating remote 

sensing models and data products . Field plots 

need to be large enough to match with pixels after 

accounting for positional error . Secondly, field data 

used as ground-truth data should not be subject to 

systematic biases, such as the tendency of many 

allometric models to systematically underpredict the 

AGB of large trees .55 Some researchers are already 

using methods such as integrating terrestrial lidar 

with aerial lidar which can produce AGB maps with 

low uncertainty .56 These methods are being applied 

to sampling designs for the explicit purpose of 

scaling up inferences and validating remote sensing 

models . They likely provide greater certainty than 

55. Demol M, Aguilar-Amuchastegui N, Bernotaite G, Disney M, Duncanson L, Elmendorp E, Espejo A, Furey A, Hancock S, Hansen J, et al. 2024. Multi-scale 
lidar measurements suggest miombo woodlands contain substantially more carbon than thought. Commun Earth Environ. 5(1):1–11. doi:10.1038/s43247-
024-01448-x. [accessed 2025 Apr 25]. https://www.nature.com/articles/s43247-024-01448-x .

56 . Demol M, et al ., Multi-scale lidar measurements .

using traditional field plots and allometric equations . 

Nevertheless, determining the most appropriate 

source of truth for model training and validation is still 

a topic of academic debate and will likely change in 

the future . Therefore, some flexibility in benchmarking 

standards and data sources is required, with an 

emphasis on developing approaches that reduce 

estimated uncertainties over space and time .

In addition to avoiding the pitfalls of standardization 

and centralization discussed in box 3, there are 

two additional important considerations for the 

development of a global benchmarking dataset . 

First, any global benchmarking effort must be 

compatible across the registries . During the Meta-

hosted workshop conducted as part of this analysis, 

one registry expressed that they would use this 

information to help with decision-making, but it 

wouldn’t replace their methods . While a benchmarking 

dataset would be most useful if registries accepted 

and interpreted the data consistently, a reality of the 

industry is that registries differentiate themselves 

by developing their own standards . Providing 

variable offerings is important and promotes 

competition . However, if a lack of alignment on 

dataset standardization and centralization persists, 

it will likely continue to foster challenges with data 

applicability, efficacy, uncertainty, and transparency . 

Mitigating these challenges will require that registries 

collaborate and align on benchmarking needs . 

Second, a global benchmarking dataset must account 

for constraints that are specific to individual projects, 

registries, and applications . 

http://carbon-direct.com
https://www.nature.com/articles/s43247-024-01448-x
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RECOMMENDATION 6: Develop a centralized 

remote sensing data portal for forest carbon MMRV. 

Following establishment of dataset benchmarks 

(Recommendation 5), an infrastructure to house 

data can be created to facilitate reliable application 

of the data . Data providers should lead the effort of 

developing a centralized data portal where MMRV-

relevant, high-resolution imagery and data products 

are made available to developers, registries, and 

other stakeholders . Building on Recommendations 

1, 2, and 4, datasets on the portal would meet 

agreed-upon quality criteria that are determined with 

consistent approaches, and data providers would 

report uncertainty in a standardized way . The portal 

could host both open source and licensable models 

and data products . This would allow data to become 

more accessible while also allowing for the sale of 

commercial data, which would incentivize investment 

in new data collection and model development . If the 

portal also includes a mechanism to signal demand, 

higher-resolution data (spatial and temporal) could 

be made available in specific areas and time periods 

of interest . This portal could integrate with or build on 

existing data portals such as the Google Earth Engine 

Data Catalog57 or ESA Earth Online .58

The recommended data portal must be designed so 

that registries that are trying to bring digital MMRV 

in house (e .g ., Isometric, Ecosystem Restoration 

Standard) could integrate with it. Registries could 

perhaps build on top of the data portal and use it as 

a starting point for determining their own metrics 

of quality (Recommendation 4). Further technical 

57. Google for Developers. nd. Earth Engine Data Catalog. [accessed 2025 Jun 4]. https://developers .google .com/earth-engine/datasets .

58. European Space Agency. nd. Data - Earth Online. [accessed 2025 Jun 4]. https://earth .esa .int/eogateway/catalog .

59 . Vision transformers have the advantage of providing more spatially coherent maps of canopy height or carbon stocks compared to the patchier per-
pixel classification approaches that are not spatially aware . They also have the exciting potential to leverage relatively accessible and temporally rich optical 
imagery to create time series of forest structural attributes like AGB and canopy height that are more challenging to derive .

details on the proposed portal design are included in 

this report’s Appendix . 

RECOMMENDATION 7: Apply new deep 

learning models to unlock new remote sensing 

applications. This recommendation relies on all 

previous recommendations, as it requires a thorough 

understanding of model uncertainties, establishment 

of stable infrastructures, and well-defined standards 

for use . Domain experts and data providers should 

leverage deep learning and computer vision models 

to produce more reliable forest structure data 

products with lower uncertainty and higher spatial 

and temporal resolution . Deep learning architectures 

(e.g., vision transformers),59 such as those used by 

Meta’s model (box 4), have the potential to produce 

more accurate and geographically consistent 

estimates of forest structural attributes compared 

to classical machine learning methods (e .g ., random 

forests, support vector machines). Generally, even 

the most technically competent and well-resourced 

developers and registries do not work with deep 

learning and computer visions models . Therefore, 

a critical step toward the adoption of these models 

for forest carbon project development will be 

implementing them as easy-to-use features of a 

data portal (Recommendation 6). We recommend 

providing these layers at multiple spatial and 

temporal resolutions so that the user can match 

the resolution to their needs and computational 

resources. Users could work with lower-resolution 

data when high-resolution detail is unnecessary and 

computational resources are limited .

http://carbon-direct.com
https://developers.google.com/earth-engine/datasets
https://earth.esa.int/eogateway/catalog
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Box 4. Applying Meta’s model to carbon project design and MMRV 

Meta’s model is well-positioned to unlock new applications for forest carbon MMRV . The model uses  
a vision transformer that leverages spatial context from high-resolution imagery to make predictions  
about forest structure . This approach can reduce the tendency of canopy height models to not capture  
tall canopies  . In the companion piece to this paper,60 we discuss how Meta’s model can be used in  
three common methodologies . Here, we call out some particularly novel and exciting current and  
future applications:

• Monitoring agroforestry projects: Submeter canopy height data could facilitate tree counting in 
agroforestry plots that use census-based methods for monitoring project performance and reversals . 

• Counting individual trees in sparsely forested ecosystems: The ability to count individual trees could 
facilitate the quantification of natural regeneration baselines and project performance in sparsely forested 
areas such as Sahelian savannas, Miombo woodlands, and Brazilian Cerrado . 

• Identifying old-growth forest and other areas of conservation priority: Many attributes of old-growth 
forests, such as very tall trees, canopy gaps, and understory complexity, are detectable with high-
resolution canopy height data . 

• Quantifying biodiversity benefits: Structural heterogeneity is often an indicator of biodiversity and can  
be used to create benchmarks in reference ecosystems or to quantitatively set forest structure goals . 
Different species of concern have specific forest structure requirements . Meta’s model is well positioned 
to be used as a tool in identifying specific forest areas with high conservation value and tracking progress 
toward restoring specific habitats . 

• Quantifying changes in forest degradation: Not all logging takes the form of easily detectable clear cuts . 
Selective logging can cause forest degradation that is difficult to detect using widely available data with a 
spatial resolution of 10–30 meters. Meta’s model is well positioned to be used as a tool to detect increases 
in forest degradation . It can also be used to detect the inverse, or “reverse leakage,” which may occur as  
a co-benefit of forest carbon projects that provide employment opportunities that disincentivize logging .

• Monitoring reversals and attribution: Reversals are currently monitored using optical imagery or human 
interpretation of high-resolution imagery . However, these methods can be unreliable in places where forest 
regrowth is difficult to detect and distinguishing between new growth and intact (undisturbed tree canopies) 
is challenging for both models and humans . Meta’s model is well-positioned to be used as a tool to quantify 
the areal extent and expected relative carbon intensity of disturbances . Most interestingly, because it 
can incorporate spatial context and recognize characteristic spatial patterns of disturbance, it is a more 
sophisticated tool for use in attributing disturbance to specific agents (e.g., pest outbreak, fire logging).

• Providing an input variable for estimating AGB: Canopy height is a strong predictor of AGB and provides 
a key structural variable that complements spectral information . By integrating spatially explicit, high-
resolution canopy height data with satellite imagery, climate data, or field-based allometric models,  
more accurate and spatially consistent AGB predictions are possible .

60 . Carbon Direct and Meta . 2025 . Integrating Meta’s Canopy Height Map into Forest Carbon Methodologies: A Tactical Guidebook . https://www .carbon-
direct .com/research-and-reports/meta-guidebook

http://carbon-direct.com
https://www.carbon-direct.com/research-and-reports/meta-guidebook
https://www.carbon-direct.com/research-and-reports/meta-guidebook
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Conclusion
We are in the digital age of forest monitoring. Remote sensing presents a transformative opportunity to 

enhance the transparency, accessibility, reliability, and scalability of forest carbon MMRV . However, realizing 

its full potential requires overcoming significant governance, technical, and infrastructure barriers . 

The MMRV community needs, and is indeed motivated to:

• Establish a broad consensus to moving this technology forward. However, this effort will require  

a balanced approach, as it must be flexible enough to keep pace with rapid technological advances . 

• Clarify standards and quantify uncertainty to build stakeholder confidence in remote sensing for  

forest carbon MMRV . This would enhance the integrity of the VCM . 

• Invest in benchmarking datasets, centralized data portals, and user-friendly tools to help  

democratize access to high-quality remote sensing products . 

The emergence of deep learning models, such as Meta’s, underscores the potential for remote sensing 

to deliver higher-resolution, more accurate insights for a range of forest carbon applications . Building a 

robust, inclusive MMRV consortium that represents diverse stakeholder perspectives will be essential to 

operationalizing this potential. Ultimately, aligning governance, technical innovation, and capacity building 

will make remote sensing technology easier to access and use, bolstering the credibility of the VCM .

Copernicus Sentinel-2 L2A data [2025-07-08]. Latitude = -10.74684 Longitude = -63.58246.

http://carbon-direct.com
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Glossary 
Allometric equation: A mathematical model relating 
easily measured tree dimensions (e .g ., diameter, 
height) to variables that are harder to measure (e.g., 
biomass). These equations are specific to particular 
species or sites and are critical for estimating forest 
carbon stocks . 

Calibration: The process of aligning the predictions 
of a model with observed, ground-truth 
measurements to ensure that the model’s outputs are 
as accurate as possible for the context in which it is 
calibrated .

Carbon project methodology: A standardized, 
science-based framework that defines how a 
carbon project should be designed, implemented, 
monitored, and verified to quantify the greenhouse 
gas reductions or removals it claims to generate .

Data product: Processed dataset in a standardized 
format (e.g., GeoTIFF, NetCDF), often including 
metadata, that may be derived from remotely sensed 
data or a combination of remotely sensed data, field 
data, and modeling .

Forest structural attributes: Variables that describe 
different dimensions of forest structure including 
above-ground biomass, tree canopy height, and 
tree density . These attributes are used to find 
suitable areas for forest carbon projects, to monitor 
disturbances, and to estimate project performance . 
Above-ground biomass can be used to estimate 
forest carbon stocks .

Forest type: A classification of forests based 
on dominant tree species, composition, and 
environmental conditions (e .g ., tropical rainforest, 
temperate deciduous forest). Types are defined  
by factors like canopy structure, leaf longevity,  
and climate . 

Ground truthing: The process of validating a remote 
sensing inference with field observations that are 
assumed to be the source of truth .

Machine learning: A subset of artificial intelligence 
that allows computers to learn from data and 
improve their performance over time without being 
explicitly programmed for every outcome . Instead 
of following fixed rules, machine learning algorithms 
identify patterns and relationships in data to make 
predictions, classify information, or detect anomalies . 
This approach is particularly valuable in complex 
or data-rich environments—like remote sensing—
where traditional rule-based programming may be 
insufficient or inefficient .

Model: A mathematical or computational structure 
that represents the relationships between inputs and 
outputs based on underlying patterns in data . Models 
can range from simple formulations, like regression 
models that fit linear or nonlinear relationships 
between variables, to highly complex architectures 
such as deep learning models and vision 
transformers that learn hierarchical and abstract 
representations from large-scale datasets .

Remote sensing: The science of acquiring 
information about Earth’s surface or other objects 
without physical contact, using sensor technologies 
on satellites, aircraft, or drones . It includes passive 
(e.g., reflected sunlight) and active (e.g., radar, lidar) 
methods to detect surface properties .

Reversal: The unintentional or intentional release of 
previously sequestered carbon (e .g ., via logging, fire, 
or other disturbance).

Spatial and temporal resolution: Spatial resolution 
is the ground area represented by one pixel (e .g ., 30 
meters for Landsat). Finer spatial resolution captures 
smaller features . Temporal resolution is the frequency 
of data acquisition (e.g., daily for MODIS). High 
temporal resolution tracks dynamic changes .

Validation: Assessing model performance by 
comparing model estimates with independent 
ground-truth data .

http://carbon-direct.com
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Appendix
Data portal design 
(Recommendation 6)
While most data providers already understand the 

value of transparently describing the limitations 

of their models and datasets, working toward 

greater standardization and centralization will help 

providers communicate these limitations in more 

consistent language . This will help users navigate 

and compare models and their limitations more 

effectively and ultimately increase usage . The portal 

should document regionally specific uncertainty 

estimates for data products (Recommendation 4) 

in a standardized and accessible way, which would 

be enabled by integrating a global benchmarking 

dataset (Recommendation 5) with this portal. The 

portal could indicate which datasets were approved 

by specific registries (where possible) and provide 

clear guidance on conservatism . Critically, the user 

interface for the portal needs to be as simple as 

possible and global in scope to accommodate a wide 

range of technical capacities in working with models 

and spatial data .

The proposed data portal could lower the cost 

and increase the accessibility of digital MMRV for 

developers with fewer resources in multiple ways . 

First, a centralized and accessible portal for datasets 

will be particularly helpful for smaller developers 

who lack in-house expertise to effectively acquire, 

analyze, and use remote sensing data themselves 

(e.g., through Google Earth Engine). Secondly, it can 

be expensive for project developers to get through 

the project feasibility stage . While it may take time 

for registries to accept or certify the use of specific 

data products on a centralized data portal, these 

datasets could be used as a feasibility sandbox 

for determining project feasibility and eligibility in 

the interim . This would help buyers and investors 

evaluate the potential of early-stage projects from 

under resourced project developers more quickly 

and cheaply . When making these evaluations, buyers 

care about understanding not just the credibility of 

a project but also the potential for credit issuances 

through time . Buyers need ways to compare what 

a good credit yield looks like across projects, 

streamline this assessment, and justify if and why 

one project is better than another . While carbon 

credit agencies could provide such information, a 

feasibility sandbox integrated with open-source data 

could standardize technical diligence approaches and 

improve confidence among buyers . One developer 

noted that any feasibility analysis of a project should 

strive to use the same methods as those that will 

ultimately be used for crediting, to avoid large jumps 

in the projected internal rate of return . A centralized 

data portal for assessing feasibility and, ultimately, 

credit issuance would satisfy this need .

A centralized data portal would also enable the 

broader use of advanced, open-source models, such 

as Meta’s model, where they could be applied to 

free or paid high-resolution imagery, depending on 

the needs and budget of the user . This would also 

reduce the technical barrier of working with open-

source models by automating the complex steps of 

finding and preparing suitable data for the models 

to ingest and quantifying uncertainty in the resulting 

predictions . The portal could host a wide variety of 

models, especially ones that are relatively agnostic to 

input data . 

http://carbon-direct.com
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A data portal or product hub should still allow 

project developers to use their own validation data, 

when it is available, to test the performance of 

regional or global models in their specific project 

area . Many project developers already use their 

own field data to validate potential data products 

and appreciate being able to do so . A data 

portal could allow developers to upload project-

specific validation data and the platform could 

provide an automated, project-specific calibration 

and uncertainty quantification methodology 

(Recommendation 4) that is pre-approved by 

registries . This would help alleviate the technical 

burden of determining if global datasets are 

acceptable for project-specific use cases . It could 

reduce the need for third-party verification, or 

make third-party verification more affordable and 

less idiosyncratic .

Uncertainty deductions  
for credit calculations  
(Box 1 and  Barrier C)
Although uncertainty deductions for credit 

calculations are becoming more common across 

project types and methodologies it would be 

helpful to have stakeholders align on where in the 

distribution of carbon stock estimates (figure 6) we 

think is a conservative place to set credit issuance . 

There will be limits to how much standardization can 

occur for this . Buyers are not a monolith and have 

differing interests, values, and capacities to pay . 

Additionally, approaches for quantifying uncertainty 

vary across models . 

Autumn forest trails. Source: Adobe Stock.

http://carbon-direct.com
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Uncertainty of carbon
stock estimates

Figure 6. Carbon stock estimates are always associated with uncertainty . As uncertainty decreases, the distribution of 
estimates becomes tighter . In other words, the true value is more likely to be found in a narrower range of estimates . 
Credits can theoretically be issued based on estimates at any point in a distribution of estimates, but issuances derived 
further to the left of the distribution will be more conservative, while issuances to the right will be less conservative . 
For example, issuances based on the 10th percentile in the distribution of estimates will be more conservative than 
issuances based on the mean estimate . This concept could be used as a starting point for aligning the market on where 
in the distribution of estimates issuances should be based, and if and how prices should vary depending on conservatism 
(i.e., the percentiles of the distribution of estimates). Source: Carbon Direct.

http://carbon-direct.com
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